The Cost of Learning from the Best:

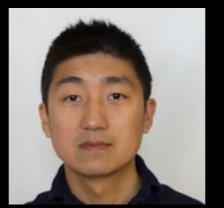
How Prior Knowledge Weakens the Security of Deep Neural Networks

Our Team X-Lab

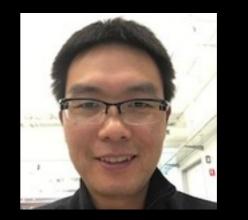
Al Security Research @

Tao Wei

Yulong Zhang



Yunhan Jia

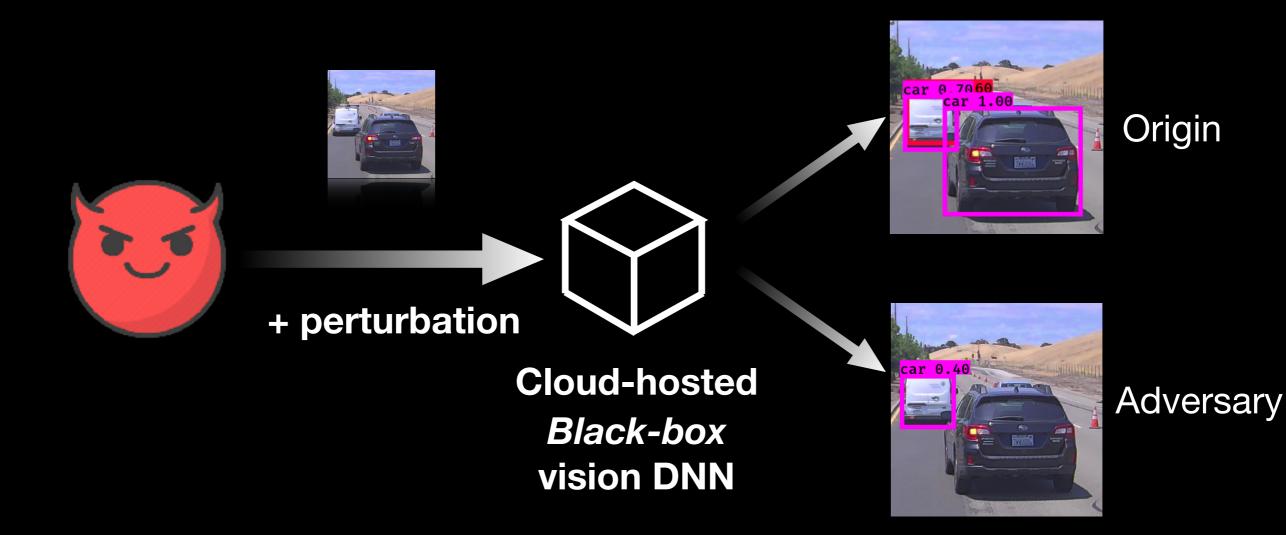


Zhenyu Zhong

Yantao Lu

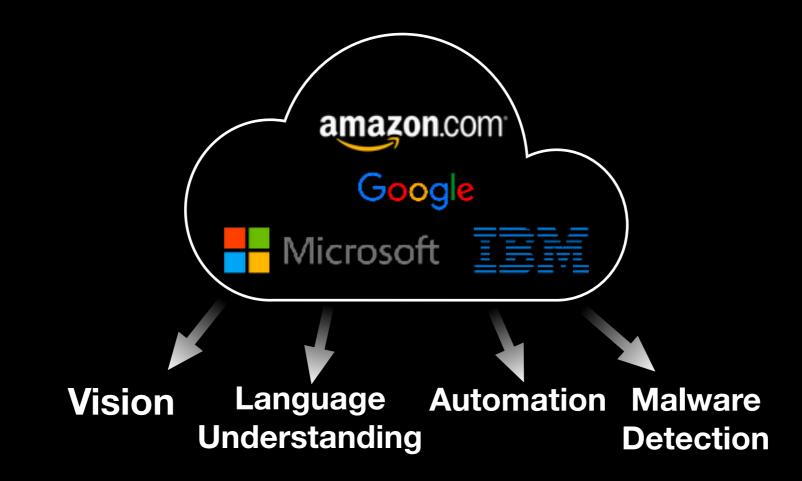
Open Source Projects:

Today's Topics



Al Models in the Cloud

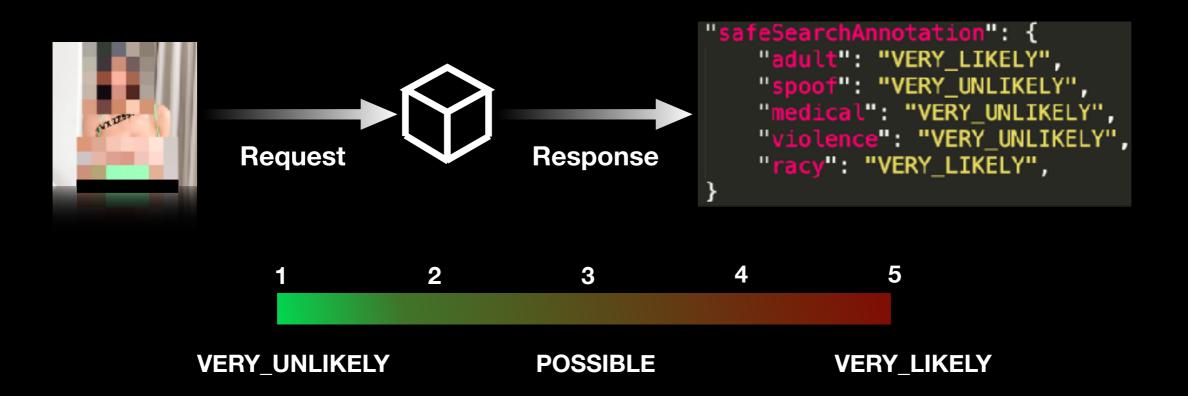
• ML services are provided through Cloud APIs



Are cloud models safe against adversary?

Case Study: SafeSearch API

 Detect explicit content such as adult or violent content within an image sent in the query



Is this black-box model safe against fraudster?

Spatial Attacks

 We implement adversarial spatial transformations on images with explicit contents that allow evasion

 Attack evaluation: 100 crawled porn images with 100 queries each to the Safe Search API using our mixed spatial attack transformations

Spatial Attacks

- Empirical results show that Safe Search API is vulnerable to spatial attacks
 - 69% images adult \leq 2
 - 40% images (adult, racy) \leq (2, 2)
- Potential causes:
 - Not enough spatial data augmentations
 - Preprocessing not cropping out region of interest

Is spatial attack generally applicable to cloud vision models?

Object Detection API

• Object localization API is **Robust** against spatial attacks:

- Multiple objects
- Knowledge Graph
- Bounding boxes
- Scores

"localizedObjectAnnotations": ["name": "Van", "score": 0.89648587, "normalizedVertices": [{"x": 0.32076266, "y": 0.78941387}, {"x": 0.43812272,"y": 0.78941387}, {"x": 0.43812272,"y": 0.97331065}, {"x": 0.32076266, "y": 0.97331065} }]

Origin

Framing

Perspective

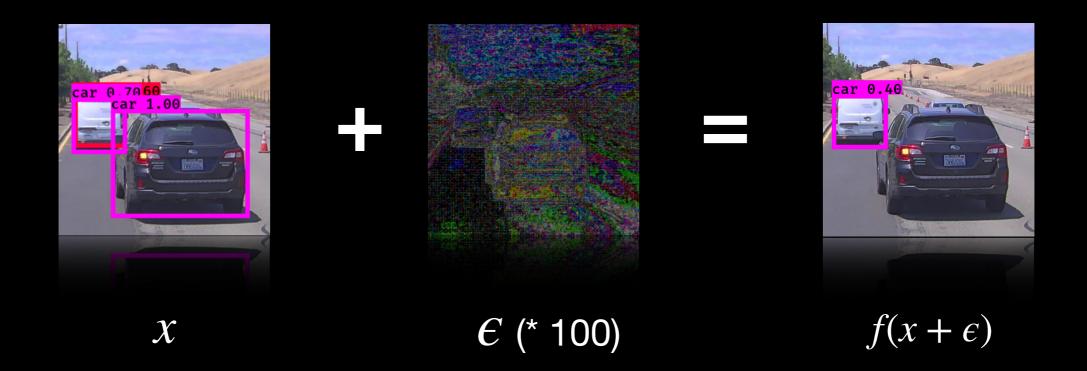
Affine

Attacks Overview

Introducing Fingerprinting attack that generates adversary examples efficiently against cloud vision models.

Adversarial Threat to DNN

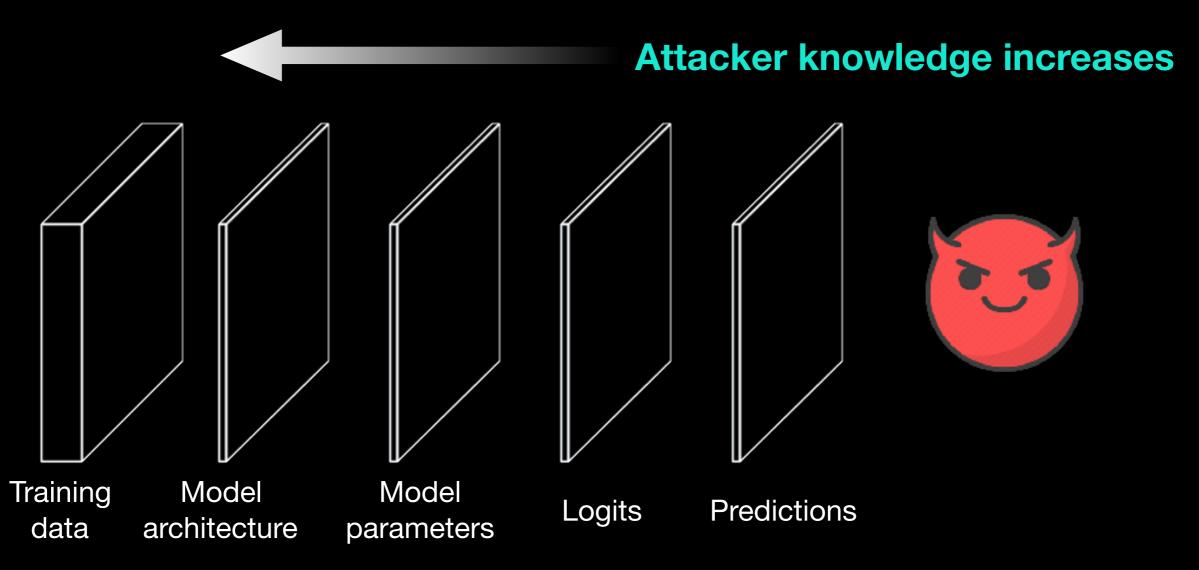
 Adversarial Examples: inputs to ML models that an attacker has intentionally designed to fool the models such as:



White-box vs. Black-box

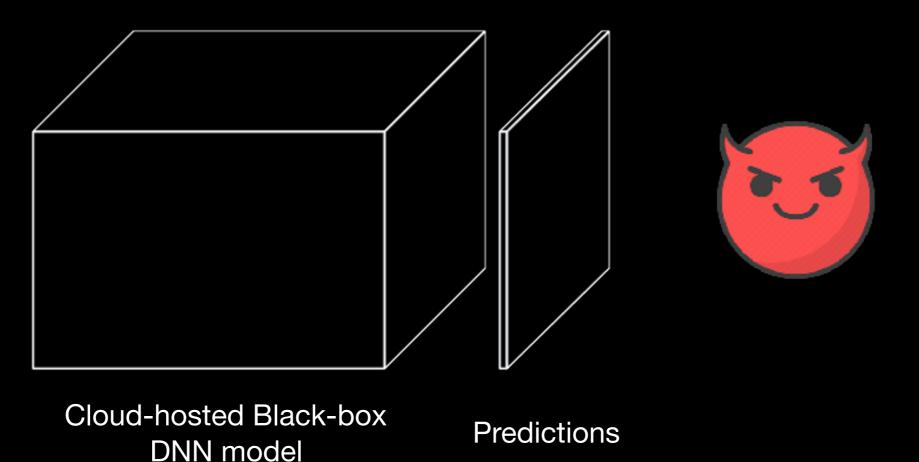
Adversarial usually requires white-box access to model

• Requires gradient information to generate adversarial perturbations



White-box vs. Black-box

Cloud AI models are black-box to attackers



Black-box provides a FALSE sense of security

Stealing the secret sauce of cloud models leveraging transfer learning

Transfer Learning

Pre-trained ConvNet used as feature extractor

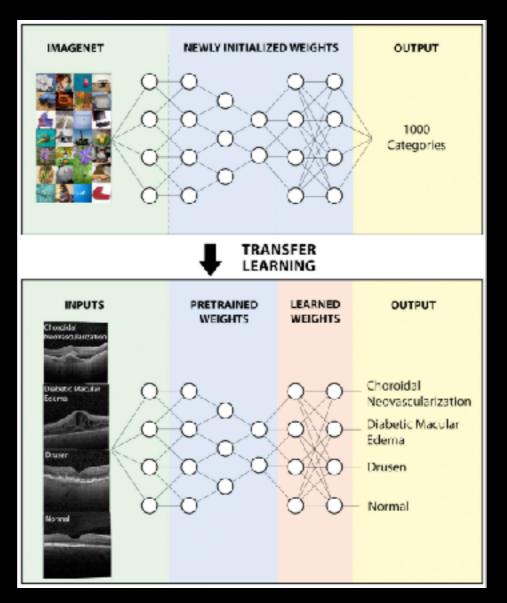


Image from Intel AI Academy

Transfer Learning

- Pre-trained ConvNet used as feature extractor
 - Deep-layer feature extractor
 - Mid-layer feature extractor with fine-tune

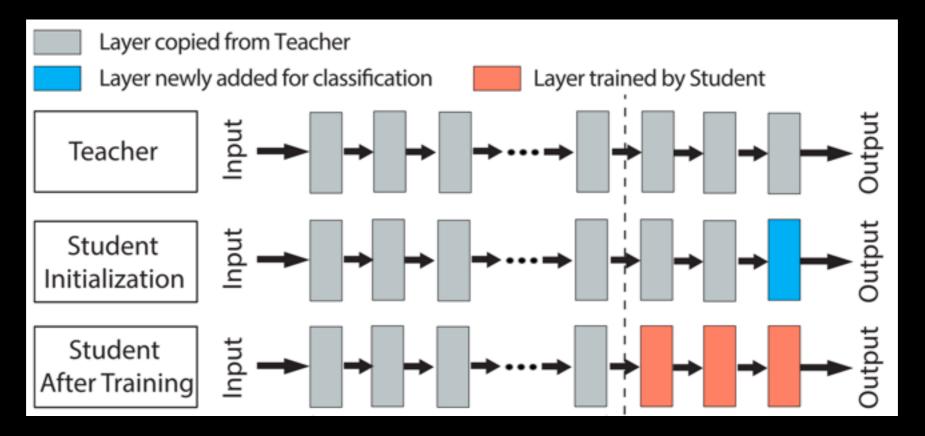


Image from Wang et al.

Object Detection Models

• YOLO v3 as an example

Insights: Adversarial sample fools layer K also fools the model

Fingerprinting attack against Object Detection API

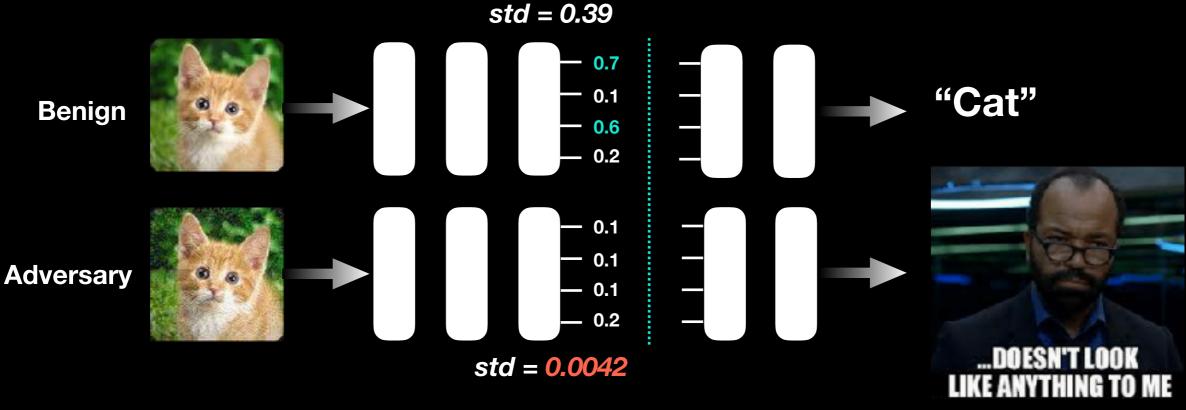
1. Identify the feature extractor that the target model is pre-trained on with a few queries

2. Generating adversarial samples on white-box pre-trained model

3. Attack black-box model using the samples

Target Internal Layer

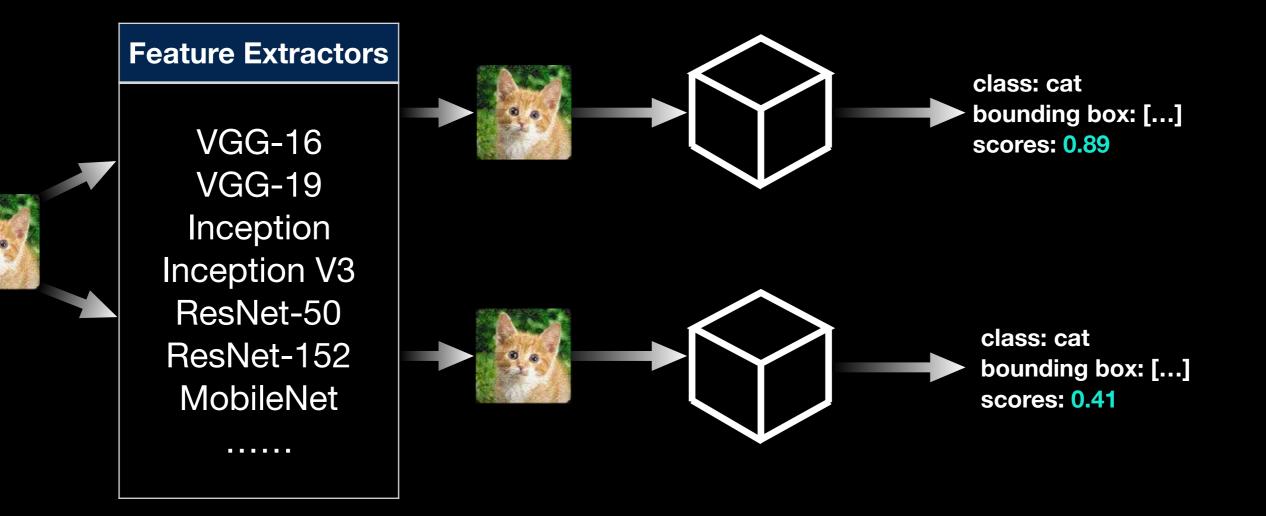
- Target: Minimize "dispersion" of logits at layer K
 - Dispersion measures: Gini coefficient, standard deviation, etc.
 - "Recognizable" images will have high dispersion
 - Low dispersion at layer K results in low confidence score at final layer



Kth layer

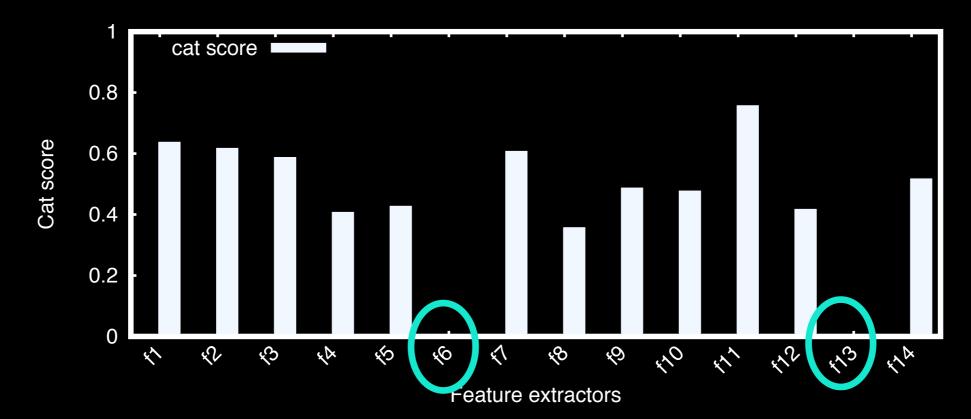
Fingerprinting Feature Extractor (1)

- For each popular feature extractor, generate samples that minimize the dispersions of each of the last few layers.
- Query with the samples and monitors the variation of score



Fingerprinting Feature Extractor (2)

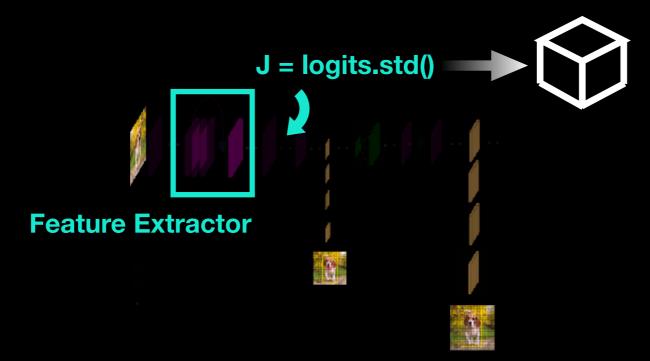
Identifying the feature extractor used in cloud models



• Iterative gradient sign method on **f**₆ and **f**₁₃ $x^{adv} = x - \epsilon \cdot sign(\nabla_x J(\cdot))$

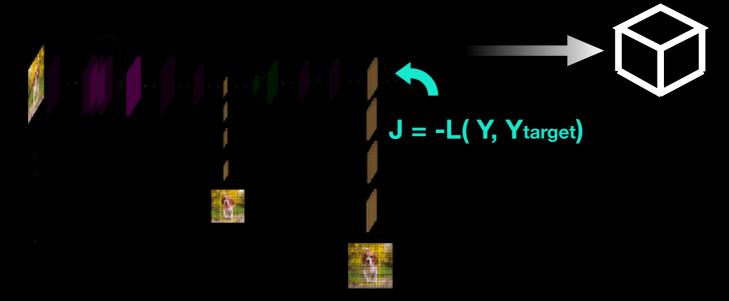
White-box Generation

- Choices of attack target **J**:
 - Dispersion of feature extractor: high success rate, requires large perturbation



White-box Generation

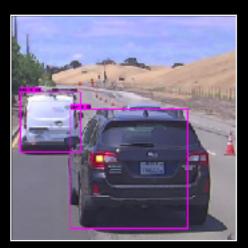
- Choices of attack target **J**:
 - Dispersion of feature extractor: high success rate, requires large perturbation
 - Target object score: minimum perturbation, lower success rate



Attack Evaluation

Achieved high evasion rate with limited budget (queries)

Method	# of queries attempted	Evasion rate
Dispersion	Limit attack budget (2 queries)	33%
	No budget limit (100 queries):	86%
Target	Limit attack budget (2 queries)	16%
	No budget limit (100 queries):	65%

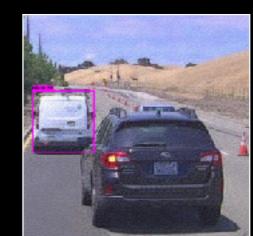


Van: 0.89

Car: 0.93

Origin

Target score attack

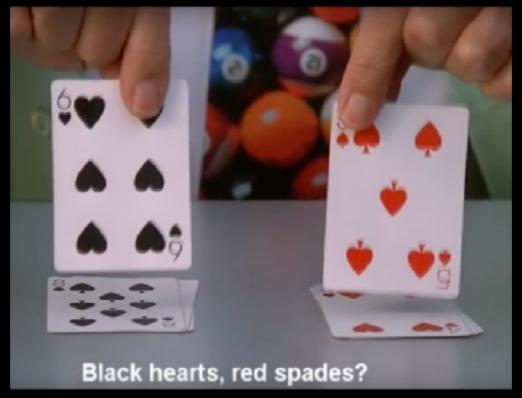


Dispersion attack

Van: 0.59

Conclusion

- Black-box only provides a false sense of security.
 - Fooling prediction result by targeting internal layers is generally applicable to DNNs
 - Potential solution: hardening model with adversarial training



Adversarial example to human from Interstate 60