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Introduction

e Adversarial Examples (AE) against object detec-

tion models have been studied, and are believed

to be a realistic threat to autonomous driving.
E.g., adversarial patch on stop signs

MOT Background

* MOT identifies objects and their trajectories Figurel. The complete Track-by-Detection pipeline of
in video frames. Three major components: modern autonomous systems.

e Data association between detected objects
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* We are the first to study the adversarial learning * Track management controls the creation bbox. class bbox, class, track_id, velocity
against complete visual pipeline in autonomous and deletion of trackers. A new tracker will
driving, and discover novel attack, tracker hi- be created only when being constantly detect-
jacking, which can move an object in or out of ed for H frames (Hit Count); A tracker will be Recommended setting: R=60, H=6 for 30 fps video [2].
the headway of an autonomous vehicle to cause deleted only if no objects is associated with
safety hazards using as few as one frame. for a duration of R frames (Reserved Age).
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adversarial goals:

attacker-controlled direction

e Overview: Generate an adversarial patch to fool the object detector model with two

1. Erase the bounding box of target object from detection result.
2. Fabricate a bounding box with similar shape that is shifted a little bit towards an

e The fabricated bounding box (red) will be associated with the original tracker, and thus

t=2 t=3 would give a fake velocity towards the attacker-controlled direction.

Track hijacked with Adversarial tracker will  Original object will ’rrocking result.
adversarial velocity not be deleted until R not be tracked until £

Figure2. One-frame tracker hijacking attack workflow

Anack Effectiveness

 Definition of a successful attack: the detected bounding box of target object can no longer be associated with any of the existing

trackers when attack has stopped.

e Evaluation dataset: 20 video clips from Berkeley Deep Drive (BDD) datasets, 10 for move-in scenario, and 10 for move-out scenario,
* Implementation: MOT implemented based on the one used in OpenCV, Object detection adopts YOLOv3. The number of frames re-

quired for a successful attack depends on a parameter, called measurement noise covariance of Kalman filter. We test under different

noise level.

Finding optimal position for adversarial bounding box: finding translation § that minimizes the cost of Hungarian matching A( - )
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e [Figure 5]: Tracker hijacking attack only requires successful AEs on object detection in 2~3 consecutive frames on average to succeed

despite different (R, H) configurations.

Object move-in generally requires less frames compared with object move out,

* [Fugure 6] Tracker hijacking achieves superior (100%) success rate even even by attacking only 3 frames, while detection attack needs
to reliably fool at least R consecutive frames, which translates to a 98.3% (59/60) AE success rate for a 30 fps video system, which has

never been achieved by previous work [1, 3, 4]. Otherwise, object detection attack only has up to 25% success rate before R.
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Figureb. Attack success rate at
R=60 H=6, and R=5, H=2

* In the example, the attack lasts for only one frame, however:
The hijacked tracker will not be deleted until a reserved age (R) has passed.

e The target object, though is recovered in the detection result, will not be tracked util
a hit count (H) has reached. And before that, the object remains missing in the

e Causing rear-end crashes in two attack scenarios.
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https://github.com/advboxes/perceptron-benchmark
Welcome to check out our project!



