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Introduction
• Adversarial Examples (AE) against object detec-
tion models have been studied, and are believed 
to be a realistic threat to autonomous driving.
 E.g., adversarial patch on stop signs 
    (Eykholt et al. [1] )

• However, in a visual perception pipeline, detect-
ed objects will also be tracked, in a process called 
Multiple Object Tracking (MOT), to build the 
moving trajectories of surrounding obstacles. 

• We find that existing attacks that blindly target 
on object detection models are highly ineffective.

• We are the first to study the adversarial learning 
against  complete visual pipeline in autonomous 
driving, and discover novel attack, tracker hi-
jacking, which can move an object in or out of 
the headway of an autonomous vehicle to cause 
safety hazards using as few as one frame.

Tracker Hijacking Attack
• Overview: Generate an adversarial patch to fool the object detector model with two 
adversarial goals: 
 1. Erase the bounding box of target object from detection result. 
 2. Fabricate a bounding box with similar shape that is shifted a little bit towards an 
attacker-controlled direction

• The fabricated bounding box (red) will be associated with the original tracker, and thus 
would give a fake velocity towards the attacker-controlled direction.

• In the example, the attack lasts for only one frame, however:
The hijacked tracker will not be deleted until a reserved age (R) has passed. 

• The target object, though is recovered in the detection result, will not be tracked util 
a hit count (H) has reached.  And before that,  the object remains missing in the 
tracking result.

• Causing rear-end crashes in two attack scenarios. 

MOT Background
• MOT identifies objects and their trajectories 
in video frames. Three major components:

• Data association between detected objects 
and existing trackers is formulated as a bipar-
tite matching problem, based on the pairwise 
similarity between the bounding boxes.  

• State prediction is performed using a 
per-track Kalman Filter maintains a velocity 
model to estimate the locations of the tracked 
objects in the next frame in order to compen-
sate the motion between frames.

• Track management controls the creation 
and deletion of trackers.  A new tracker will 
be created only when being constantly detect-
ed for H frames (Hit Count); A tracker will be 
deleted only if no objects is associated with 
for a duration of R frames (Reserved Age).

Recommended setting: R=60, H=6 for 30 fps video [2].

Figure1. The complete Track-by-Detection pipeline of 
modern autonomous systems.

Figure2. One-frame tracker hijacking attack workflow

Figure3. Finding position to 
place fabricated bounding box

Figure5. Frames required to be 
fooled for successful attack

Figure6. Attack success rate at 
R=60 H=6, and R=5, H=2

https://github.com/advboxes/perceptron-benchmark

Welcome to check out our project!
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• [Figure 5]: Tracker hijacking attack only requires successful AEs on object detection in 2~3 consecutive frames on average to succeed 
despite different (R, H) configurations. 
 Object move-in generally requires less frames compared with object move out,
• [Fugure 6] Tracker hijacking achieves superior (100%) success rate even even by attacking only 3 frames, while detection attack needs 
to reliably fool at least R consecutive frames, which translates to a 98.3% (59/60) AE success rate for a 30 fps video system, which has 
never been achieved by previous work [1, 3, 4]. Otherwise, object detection attack only has up to 25% success rate before R. 
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Attack Effectiveness
• Definition of a successful attack: the detected bounding box of target object can no longer be associated with any of the existing 
trackers when attack has stopped. 
• Evaluation dataset: 20 video clips from Berkeley Deep Drive (BDD) datasets, 10 for move-in scenario, and 10 for move-out scenario,
• Implementation: MOT implemented based on the one used in OpenCV, Object detection adopts YOLOv3. The number of frames re-
quired for a successful attack depends on a parameter, called measurement noise covariance of Kalman filter. We test under different 
noise level.  
 Finding optimal position for adversarial bounding box:  finding translation    that minimizes the cost of Hungarian matching   ℳ( ⋅ )δ


